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Analysis of Trapped Image Guides Using
Effective Dielectric Constant
and Surface Impedances

WEN-BIAO ZHOU anDp TATSUO ITOH, FELLOW, IEEE

Abstract — A method has been introduced to accurately predict disper-
sion characteristics of the trapped image guide. Numerical results agreed
much better with experimental results than those previously calculated by a
simple effective dielectric constant (EDC) approach especially at the low
frequency end.

I. INTRODUCTION

T IS WELL known that reduction of the radiation loss

at curved sections, junctions, and discontinuities is im-
portant in a millimeter-wave integrated circuit based on
dielectric waveguides. The trapped image guide proposed
recently has a potential to reduce the radiation loss at
curved sections [1]. This waveguide consists of a dielectric
rod placed in a metal trough as shown in Fig. 1(a). It was
confirmed that the radiation loss at a horizontal bend is
much less than in the case of a conventional image guide.
In [1], the analysis was carried out by neglecting the fields
in regions 5 and 6 in Fig. 1(a) and subsequently applying
the effective dielectric constant (EDC) method. The results
of such an analysis are not accurate at low frequencies
where the effect of fields in regions 5 and 6 becomes more
important.

This paper presents a new method of analysis which
predicts the characteristics of the trapped image guide
much more accurately especially at-low frequencies. Com-
parison of the numerical results with experimental data
confirms the usefulness of this new method.

II. ANALYSIS PROCEDURE

Since the trapped image guide is a modification of the
image guide, the modal fields in the former are expected to
resemble those in the latter especially at higher frequencies.
Therefore, we classify the guided modes into E’- and
E*-types. In the £” modes, the predominant field compo-
nents are £, and H,, whereas in the E* modes E, and H
are dommant In thlS paper, we consider only the domi-
nant E” mode, as this is the most important in practice.

The strategy is to first find an equivalent structure Fig.

1(c) of the original one in Fig. I1(a) by way of an inter-
mediate structure in Fig. 1(b). We then apply the trans-
verse resonance condition at the dielectric—air interface
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Fig. 1. Cross section of the trapped image guide and its equivalent

structures.

y =0 in Fig. 1(c) after the effect of the free space y >0,
|x| < o0 is taken into account.

The first step is to use the effective dielectric constant
(EDC) method to obtain the intermediate structure Fig.
1(b). The EDC of the area consisting of regions 1, 2, and 3
can be obtained by solving the eigenvalue problem of Fig.
1(d) in which an infinitely long dielectric slab is sand-
wiched between two infinitely long vertical metal walls by
way of air regions of width ¢. This is a two-dimensional
structure for which an exact formulation is readily derived
by matching E, and H, at x = + a. The eigenvalue equa-
tion for the transverse Wavenumber k. in the slab is

¢cosh(&c)cos(k a)—k, sinh(éc) sm(kxa) =0 (1)

where
2
=[(e,~ k3~ k2] )
and k, is the free-space wavenumber. Once (1) is solved for
k., the EDC of the area made of regions 1, 2, and 3 is

given by
k 2
EeI=€r_(—k_J:;) . (3)

The EDC is thought of as the dielectric constant of a
hypothetical medium in which the phase velocity of a plane
wave is identical to that of a guided wave in the two-di-
mensional structure Fig. 1(d). The area made of regions 1,

~ 2, and 3 is now replaced with this EDC ¢, as shown in Fig.

1(b).
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The next step is to transform the hypothetical structure
in Fig. 1(b) to still another equivalent structure in Fig. 1(c)
in which the new effective dielectric constant ¢,y fills the
trough up to the height A. The value of e,; may be
obtained in the following manncr. We consider the struc-
tures in Fig. 1(¢) and Fig. 1(f) which are obtained by
extending the height of side walls in Fig. 1(b) and 1(c) to
infinity. If the modal field is well guided, the propagation
constant in Fig. 1(e) is very close to the one in Fig. 1(b)
and similarly the ones in Fig. 1(f) and Fig. 1(c) are close.
We choose ¢,;; in such a way that the propagation constant
B in the z direction in Fig. 1(f) is identical to the one in
Fig. 1(e). To this end, we proceed as follows.

The field in Fig. 1(e) is given by a scalar potential

¢ {gf;;:z(ym)}
el @

The eigenvalue equation for the transverse wavenumber i
is obtained by matching the tangential fields at y = —(h —
b)

y>=(h=b)

1eos —h<y<~(h=-b)"

#itan b = € ;0
2

(%)
/32+[———2(:Z 3 ] =e ki—w=ki+o".  (6)

Similarly, the characteristic equation for the transverse
wavenumber u in €, is

(7)
B ®)
Since B’s for two structures are assumed identical, v and ©

must be equal. We compare (6) and (8), and (5) and (7),
respectively, to obtain

u tan uh = € v

2

naT
— 2_ 2 12 2
= e k2 —u? = k3 + 0.

2(a+c¢)

24,2 _ 2
_Cakgtut—a

€ =——7—— 9

ell k% ( )

u tan uh =17tan17¢b (10)
k2t - e k3

In summary, we solve (5) and (6) for # using ¢ ; obtained in
the previous step, solve (10) for u using the value of 7 just
obtained and finally calculate ¢,;; from (9). This €, is now
used to fill the trough completely as shown in Fig. 1(c).
The final step is to impose the transverse resonance
condition at y =0 so that the effect of free space y >0
including regions 5 and 6 is taken into account, though in
an approximate manner. The technique we will employ has
previously been developed by Kaneki in conjunction with a
channel waveguide for surface wave antenna application[2].
We will follow his method except for necessary changes.
We apply the transverse resonance condition Za + Z_f =0
at y=0 in Fig. 1(c), where Z, is the impedance looking
into air at y =0, |[x|<co and Z, that of €,; medium at
y =0, [x| < a+ c. The former can be derived by computing
the reactive power P, per unit length in z, penetrating into
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air from the dielectric surface y =0

(11)

where E,, H_, etc., are Fourier transforms of surface field
components

E — % Ex.z(‘x’09z)

X,z

1 (® e =
P,= —2—7;f_w[EzH§ — E,H*] dk,

~kx dx. (12)

We now assume that the field in €_;; in Fig. 1(c) is very
close to the one in €,;; in Fig. 1(f). Under this assumption,
all the field components needed for (11) can be derived
from the scalar potential

H,, J_wH,_ (0, z)e

X,z

7X
= Qco +h - 13
o= Qeosuly+meos| s (1)
for the dominant mode. Using these field components, we
obtain

Qu

Pa=—ww€0['€m J(B)-sinz(uh) (14)

where w is the angular frequency and J(B) is a function of
unknown g and can be calculated quite efficiently as
shown in the Appendix. The impedance Z,, is given by

Z,=P, /> (15)

where 1 is the mode current in the y direction due to the
magnetic field at the dielectric surface y = 0.

To obtain Z _, we compute the power P, per unit length
in the z direction, transported from the interface y = 0 into
the dielectric region e

P.=2ju(W, -W,) (16)

where W, and W,, are the average electric and magnetic
energy, respectively, and are given by

—_ 1 0 + € fe L2
We =__f f(a ¢) €oenl El dxdy.
mo 24y ~(a+c)p,0‘H‘2

(17)

Hence, P, is given by

+ 2
P.=jo* wEO(Za 2L B2+ —"—|sin2uh (18)
€etn 4(a+c)
and
Z =PI (19)
The transverse resonance condition Z, + 2_5 = 0 becomes
2
e.qla+ce) B2+ —gz/—az— sin” uh
(a+c)
27Tu )
— | |[I7(B)Isin* uh = 0. (20)
(a+c)

‘The propagation constant of the original trapped image
guide is assumed to be given by the solution of (20).

IIL

Some numerical results are presented in Fig. 2 along
with experimental data for the E}; mode of three trapped
image guides with identical dielectric rods but with differ-

NUMERICAL AND EXPERIMENTAL RESULTS
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Fig. 2. Theoretical and experimental dispersion characteristics.
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Fig. 3. Comparison between the present method and [1].
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Fig. 4. Comparison between the present method and [1].

ent sidewall spacings. For comparison, the characteristics
of the conventional image guide (¢ = o0) with the same rod
dimensions are included. It is seen that the effect of the
sidewalls are more pronounced for smaller spacing ¢ of the
sidewalls. We also performed an experimental measure-
ment of the propagation constant by means of a movable
probe [3] between 8 and 16 GHz and plotted in Fig. 2 with
«, x, and A. It is clear that agreement between theoretical
and experimental results is quite good even at lower fre-
quencies. This was not the case in [1] in which a conven-
tional EDC method was used after the fields in regions 5
and 6 in Fig. 1(a) were neglected.

Comparison between the present method and the previ-
ous EDC theory is given in Figs. 3 and 4. It is evident that
the present method provides much more accurate results
especially at lower frequencies. In fact, the previous method
cannot correctly predict the dispersion characteristics at
lower frequencies because the field in regions 5 and 6 is
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Fig. 5. Effect of height of sidewalls on the dispersion characteristics.

neglected. On the other hand, such a field is incorporated
in the solution process in the new method. Experimental
results in Fig. 3 are obtained by the movable probe while
those in Fig. 4 are reproduced from the previous work [1].
Fig. 4 indicates that the results by both methods agree well
at higher frequencies.

Fig. 5 studies the effect of the sidewall height % on the
propagation constant. Both theoretical and experimental
studies indicate little difference in results due to differences
in 4 as long as 4 is reasonably larger than b. In fact, it was
not possible to distinguish theoretical results on the figure.

This result is surprising because we expect that the effect
of fields in regions 5 and 6 is stronger for a smaller value
of h. We conjecture the reason for this phenomenon as
follows. The most important contribution to the present
analysis is the aperture field at y =0, |x| <a+c¢. This
contribution is more accurately incorporated in this study
than in the previous one. The field in regions 5 and 6 may
be of second-order importance. This is strictly a supposi-
tion and more extensive investigations need to be done by
using different materials and dimensions.

IV. CONCLUSIONS

The method presented here is found to provide numeri-
cal dispersion characteristics much more accurate than the
one previously available for the trapped image guide struc-
ture. The method is based on the effective dielectric
constant and the transverse resonance of an equivalent
structure. The method is more useful in the design of the
trapped image guide.

APPENDIX
EvALUATION OF J(§8)

From (11), (12), and (13), the term J(B) in (14) is

J= J_(a__;i[ (Al)
® (1+cos2w) w? -!-‘Bz(a+c)2
I= . —do  (A2)
fo Jo+ 0> [(7/2)* = o?]

where

p=(a+c)yB?*—k2, w=k(a+tc). (A3)

Although the integral in (Al) can be evaluated fairly
easily by numerical means as the integrand decreases as
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fast as w™3, we use an alternative procedure based on the
contour integral technique. This will enable us to evaluate
a part of the integral analytically. The remainder becomes
an integral with an exponentially decaying integrand.
Therefore, the evaluation is much less time consuming.
Such a feature is important as we evaluate the integral in
the iteration algorithm. To this end, we recognize
0 1420 @24 B2(a+ 0)2

I=Re
b o or-oT

With this method of contour integration, (A4) can be
calculated by choosing the integral path which avoids the
pole at m/2 and the branch point jp as shown in Fig. 6.
Since there is no singularity inside the contour, the contour
integration is zero. The integral along the semi-
infinite contour is zero as the integrand converges and the
one around the branch jp is also zero. The integral from jp
to O provides an imaginary value. Therefore, only the
contribution around the pole and the integral from joo to jp
contribute to the evaluation of I. The following equation
will be obtained:

do. (A4)

[(7/2)"+ B2(a+ )]

Y(m/2)+ p?

o0 ,82((1+c)2—r2

» \/rz—pz[(w/2)2+r2]2
I [,Bz(a+c)2*r2]e_2r

+ dr
4 Jr2=p*[(n/2)+ 2]’

The first integral of the above equation can be evaluated
analytically [4], and the second one is computed numeri-
cally by using associated Gauss—Laguerre quadrature for-
mulas. The final result comes out as follows:

ore? [2 [Pt o]

_ ,(a+c)2

7 2
T

+ dr

(A5)

J + I+ 1,
2
V(m/2) + p?
(A6)
where
I, = !

m(n/2)"+ p?

[(7/2)7+ B2(a+ )*](n* +2p?)
7*[(7/2)+ p?]

(m/ 0+ p? + 172 of(my2)+ B2(a+ o)

. ln _
V(7/2)+ p* —a/2 n2|(n/2)+ p?]
(A7)
’12=4-e’2”_/(; i f(x}dx (A8)
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Fig. 6. Contour of integration in the w-plane.

_ 4% (a+t )= (x+2p)° .
Vx +4P [wz +(x +2p)2]2

It should be noted that the numerical calculation of (A8) is
quite efficient due to an exponential factor.

f(x)

(A9)
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