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Analysis of Trapped Image Guides Using
Effective Dielectric Constant

and Surface Impedances

WEN-BIAO ZHOU AND TATSUO ITOH, FELLOW, IEEE

,4bsfracf —A method has been introduced to accurately predict disper-

sion characteristics of the trapped image guide. Numerical results agreed

much better with experimental results than those previously calculated by a

simple effective dielectric constant (EDC) approach especially at the low

frequency end.

I. INTRODUCTION

I

T 1S WELL known that reduction of the radiation loss

at curved sections, junctions, and discontinuities is im-

portant in a millimeter-wave integrated circuit based on

dielectric waveguides. The trapped image guide proposed

recently has a potential to reduce the radiation loss at

curved sections [1]. This waveguide consists of a dielectric

rod placed in a metal trough as shown in Fig. 1(a). It was

confirmed that the radiation loss at a horizontal bend is

much less than in the case of a conventional image guide.

In [1], the analysis was carried out by neglecting the fields

in regions 5 and 6 in Fig. 1(a) and subsequently applying

the effective dielectric constant (EDC) method. The results

of such an analysis are not accurate at low frequencies

where the effect of fields in regions 5 and 6 becomes more

important.

This paper presents a new method of analysis which

predicts the characteristics of the trapped image guide

much more accurately especially at low frequencies. Com-

parison of the numerical results with experimental data

confirms the usefulness of this new method.

II. ANALYSIS PROCEDURE

Since the trapped image guide is a modification of the

image guide, the modal fields in the former are expected to

resemble those in the latter especially at higher frequencies.

Therefore, we classify the guided modes into EJ’- and

E’-types. ITI the E’ modes, the predominant field compo-

nents are Ey and H,, whereas in the E x modes Ex and HY

are dominant. In this paper, we consider only the dorrn-

nant E~ mode, as this is the most important in practice.

The strategy is to first find an equivalent structure Fig.

l(c) of the original one in Fig. l(a) by way of an inter-

mediate structure in Fig. 1(b). We then apply the trans-

verse resonance condition at the dielectric– air interface
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Fig. 1. Cross section of the trapped image guide and its equivalent
structures.

y = O in Fig. l(c) after the effect of the free space y >0,

1x1 <cc is taken into account.

The first step is to use the effective dielectric constant

(EDC) method to obtain the intermediate structure Fig.

l(b). The EDC of the area consisting of regions 1, 2, and 3

can be obtained by solving the eigenvalue problem of Fig.

l(d) in which an infinitely long dielectric slab is sand-

wiched between two infinitely long vertical metal walls by

way of air regions of width c. This is a two-dimensional

structure for which an exact formulation is readily derived

by matching Ey and Hz at x = ~ a. The eigenvalue equa-

tion for the transverse wavenumber kx in the slab is

$cosh(tc)cos(kXa) -kXsinh(&)sin(kXa) = O (1)

where

$=[(%-l)k ;-k:]’” (2)

and k ~ is the free-space wavenumber. Once (1) is solved for

kx, the EDC of the area made of regions 1, 2, and 3 is

given by ~

()k2
~el=,f — ~ .

r k.
(3)

The EDC is thought of as the dielectric constant of a

hypothetical medium in which the phase velocity of a plane

wave is identical to that of a guided wave in the two-di-

mensional structure Fig. l(d). The area made of regions 1,

2, and 3 is now replaced with this EDC C,I as shown in Fig.

l(b).
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The next step is to transform the hypothetical structure

in Fig. l(b) to still another equivalent structure in Fig. 1(c)

in which the new effective dielectric constant c,11 fills the

trough up to the height h. The value of C,II may be

obtained in the following manner. We consider the struc-

tures in Fig. l(e) and Fig. l(f) which are obtained by

extending the height of side walls in Fig. 1(b) and l(c) to

infinity. If the modal field is well guided, the propagation

constant in Fig. l(e) is very close to the one in Fig. l(b)

and similarly the ones in Fig. l(f) and Fig. 1(c) are close.

We choose CeII in such a way that the propagation constant

C in the z direction in Fig. l(f) is identical to the one in

Fig. l(e). To this end, we proceed as follows.

The field in Fig. l(e) is given by a scalar potential

[1n TX

“Cos 2(a+c)
‘>- (h-b). (4)

–h<y<–(h–b)

The eigenvalue equation for the transverse wavenumber ~

is obtained by matching the tangential fields at y = – (h –

[1/32+ ‘T “=ce,k:-ii’
2(a+c)

Similarly, the characteristic equation

wavenumber u in c,11 is

24tan uh = 6,110

(5)

=k:+tiz. (6)

for the transverse

(7)

Since /3’s for two structures are assumed identical, v and u

must be equal. We compare (6) and (8), and (5) and (7),

respectively, to obtain

telk; + U2 — ii2
<=11=

k;
(9)

u tand iitan iib. (lo)
celk: + U2 — i? celk;

In summary, we solve (5) and (6) for u using [,1 obtained in

the previous step, solve (10) for u using the value of ii just

obtained and finally calculate ceII from (9). This ~eII is now

used to fill the trough completely as shown in Fig. l(c).

The final step is to impose the transverse resonance

condition at y = O so that the effect of free space y >0

including regions 5 and 6 is taken into account, though in

an approximate manner. The technique we will employ has

previously been developed by Kaneki in conjunction with a

channel waveguide for surface wave antenna application[2].

We will follow his method except for necessary changes.

We apply the transverse res:nance condition ~a + ~< = O

at y = O in Fig. 1(c), where Za & the impedance looking

into air at y = O, lx I < cc and Z, that of c,11 medium at

y = O, lx I < a + c. The former can be derived by computing

the reactive power Pa per unit length in z, penetrating into

air from the dielectric surface y = O

where ~z, RX, etc., are Fourier transforms of surface field

components

E--,
J

m Ex, z(X, O,z),_

17xz– -Qzlx,=(x,o,z)
~-Jkx x dx - (12)

We now assume that the field in ceII in Fig. l(c) is very

close to the one in c,11 in Fig. l(f). Under this assumption,

all the field components needed for (11) can be derived

from the scalar potential

[1c)=Qcosu(y+h)cos ‘x
2(a+c)

(13)

for the dominant mode. Using these field components, we

obtain

Pa = – 7rac

0[ceII~+c)]2J(p)”sin2(uh) ’14)

where o is the angular frequency and J( /3) is a function of

unknown @ and can be calculated quite efficiently as

shown in the Appendix. The impedance Z= is given by

2== Pa/1112 (15)

where I is the mode current in the y direction due to the

magnetic field+at the dielectric surface y = O.

To obtain Z,, we compute the power P, per unit length

in the z direction, transported from the interface y = O into

the dielectric region c.II

P,= 2JJ(V.-FJ (16)

where T= and ~~ are the average electric and magnetic

energy, respectively, and are given by

~ ~ = ~ o (a+ c) f,e=nlq2
JJ dx dy. (17)

m 2 -h -(a+c)po(H12

Hence, PCis given by

P,= jQ2
@co(a+c)zf

26e11

and

p2+ ~2

1

sin2uh (18)
4(a + C)2

-z,=F’c/p12. (19)

The transverse resonance condition ~. + ~< = O becomes

—H2mu z lJ(~)lsin2uh =0. (20)
(a+c)

The propagation constant of the original trapped image

guide is assumed to be given by the solution of (20).

III. NUMERICAL AND EXPERIMENTAL RESULTS

Some numerical results are presented in Fig. 2 along

with experimental data for the E:l mode of three trapped

image guides with identical dielectric rods but with differ-



ZHOU AND lTOH: ANALYSIS OF TRAPPED IMAGE GUIDES 2165

05 10 15 20

fREQ. ENCY IGHZI

Fig. 2. Theoretical and expenmentaf dispersion characteristics.
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Fig. 3. Comparison between the present method and [1].
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Fig. 4. Comparison between the present method and [I].

ent sidewall spacings. For comparison, the characteristics

of the conventional image guide [c= m) with the same rod

dimensions are included. It is seen that the effect of the

sidewalls are more pronounced for smaller spacing c of the

sidewalls. We also performed an experimental measure-

ment of the propagation constant by means of a movable

probe [3] between 8 and 16 GHz and plotted in Fig. 2 with

., x, and A. It is clear that agreement between theoretical

and experimental results is quite good even at lower fre-

quencies. This was not the case in [1] in which a conven-

tional EDC method was used after the fields in regions 5

and 6 in Fig. l(a) were neglected.

Comparison between the present method and the previ-

ous EDC theory is given in Figs. 3 and 4. It is evident that

the present method provides much more accurate results

especially at lower frequencies. In fact, the previous method

cannot correctly predict the dispersion characteristics at

lower frequencies because the field in regions 5 and 6 is
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Fig. 5. Effect of height of sidewalls on the dispersion characteristics.

neglected. On the other hand, such a field is incorporated

in the solution process in the new method. Experimental

results in Fig. 3 are obtained by the movable probe while

those in Fig. 4 are reproduced from the previous work [1].

Fig. 4 indicates that the results by both methods agree well

at higher frequencies.

Fig. 5 studies the effect of the sidewall height h on the

propagation constant. Both theoretical and experimental

studies indicate little difference in results due to differences

in h as long as h is reasonably larger than b. In fact, it was

not possible to distinguish theoretical results on the figure.

This result is surprising because we expect that the effect

of fields in regions 5 and 6 is stronger for a smaller value

of h. We conjecture the reason for this phenomenon as

follows. The most important contribution to the present

analysis is the aperture field at y = O, lx I < a + c. This

contribution is more accurately incorporated in this study

than in the previous one. The field in regions 5 and 6 may

be of second-order importance. This is strictly a supposi-

tion and more extensive investigations need to be done by

using different materials and dimensions.

IV. CONCLUSIONS

The method presented here is found to provide numeri-

cal dispersion characteristics much more accurate than the

one previously available for the trapped image guide struc-

ture. The method is based on the effective dielectric

constant and the transverse resonance of an equivalent

structure. The method is more useful in the design of the

trapped image guide,

APPENDIX

EVALUATION OF ~(~)

From (11), (12), and (13), the term ~(~) in (14) is

~=j(a+c)21

2
(Al)

~= ~ (l+cos2@) . co2+j32(a+c)2d@ ~A2)

J
0 /w [(./2)’_ .2]’

where

P’(a+c)/~ 0$ co=kX(a+ c). (A3)

Although the integral in (A 1) can be evaluated fairly

easily by numerical means as the inte&md decreases as
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fast as ti-3, we use an alternative procedure based on the

contour integral technique. This will enable us to evaluate

a part of the integral analytically. The remainder becomes

an integral with an exponentially decaying integrand.

Therefore, the evaluation is much less time consuming.

Such a feature is important as we evaluate the integral in

the iteration algorithm. To this end, we recognize

l=Re
J

~ l+e~2’J ti2+~2(a+c)2dti.

0 m [(./2)’..’]2

(A4)

With this method of contour integration, (A4) can be

calculated by choosing the integral path which avoids the

t pole at T/2 and the branch point jp as shown in Fig. 6.

Since there is no singularity inside the contour, the contour

integration is zero. The integral along the semi-

infinite contour is zero as the integrand converges and the

one around the branch jp is also zero. The integral from jp

to O provides. an imaginary value. Therefore, only the

contribution around the pole and the integral from jm to jp

contribute to the evaluation of I. The following equation—
will be obtained:

(~=j (a+ c)’ ~ [(n/2)2 +B2(a+c)2]
27r

m

J
‘m

+

f?ya+c)’–r’
zdr

p Km(m)2+ ~2]

+,~ [B’(a+c)we-’r

)p -[(w2+ ~’]’dr “

(A5)

The first integral of the above equation can be evaluated

analytically [4], and the second one is computed numeri-

cally by using associated Gauss–Laguerre quadrature for-

mulas. The final result comes out as follows:

~=j(u+c)z

(

~ [(77/2) 2+ J?2(a+c)2] +1 +1

2T
m“ 1

(A6)

where

“=d’iim
. ~+ [(~/2)2+P2(a+c)2](n2+2p2)

{ 7T@/2)2+pq }

.lnm= +”/’ 2[(@2+B%+c )2]

--./2 - “2[(”/2)2+p21
(A7)

12= 4e-2pJ@&~(X) dX (A8)
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Fig. 6. Contour of integration in the a-plane

f(x) =
4~2(a+c)2–(x+2p)2

6W-[.2 +(x +2p)2]2 “
(A9)

It should be noted that the numerical calculation of (A8) is

quite efficient due to an exponential factor.
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